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DEDICATED TO THE MEMORY OF EVA MEZEI 

A self-consistent procedure is described for the determination of the non-Boltzmann bias for 
the umbrella sampling technique of Valleau, Patey, and Torrie. The new procedure offers 
more reliable results with less human interference. The problem of matching several differently 
normalized probability distributions on overlapping domains has been treated in detail. The 
algorithm has been tested on the calculation of the solvent contribution to the free energy 
difference between the C, and rK conformation of the alanine dipeptide, treated earlier with 
the conventional umbrella sampling technique. ( 1987 Academic Press. Inc 

1. INTRODUCTION 

Non-Boltzmann or umbrella sampling [ 1, 21 is frequently used in computer 
simulation when the sampling of a specific region of the configuration space is 
required that may not be sampled adequately in a direct Boltzmann sampling. The 
technique calls for a sampling with a modified potential. The major difficulty in the 
successful application of umbrella sampling is the search for the appropriate 
modification, usually determined by trial and error. The purpose of this paper is to 
demonstrate the feasibility of generating a potential modification from the 
simulation itself in a self-consistent manner that performs the required sampling 
more efficiently than the ones obtained by trial and error. 

2. BACKGROUND 

The successes of both the Monte Carlo and molecular dynamics methods in 
describing the liquid state of matter is based on the ability of these methods to 
restrict the sampling of the configuration space to the extremely small fraction that 
contributes significantly to most properties of interest. However, for calculations of 
free energy differences, adequate sampling of a much larger subspace is required. 
Also, for the related problem of potential of mean force calculations the structural 
parameter along which the potential of mean force is calculated has to be sampled 
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uniformly. These goals can be achieved by performing the calculation using an 
appropriately modified potential energy function V 

V=E+E, (1) 

where E is the original potential function and E, is the modification [ 1, 2, 33. The 
subscript W indicates that the Boltzmann factor is modified by a “weighting 
function” exp( -E,/kT) when V is used. From a calculation performed with V for 
any quantity Q the Boltzmann average (Q) I: can be recovered as 

(Q>,<= <Q exp(E,lkT)),,l(exp(E,,lkT)),. (2) 

where the subscript V indicates that the average is obtained with the modified 
potential of Eq. (1). While there is no serious theoretical limitation on the choice of 
E practical considerations limit it to functions that do not show too large 
vay;ation over their domain since their exponential is involved in Eq. (2) [4]. 

Generally, E, is a function of a few parameters h only, either energetic (when the 
free energy difference between two types of particles is computed [2, 5, 63) or struc- 
tural (when the potential of mean force is calculated [l, 3, 7-101). E,(A) is to be 
chosen in such a way that the domain of 1 is adequately sampled. 

The usual way of determining the non-Boltzmann bias E,(h) proceeds by trial 
and error. At first a trial E,(h) is assumed, a short simulation is run and the region 
sampled is examined. Next, E,(1) is modified to give larger weight to undersam- 
pled or unsampled regions of the X-space and a new run is performed. This process 
is repeated until an E,(h) is found the samples the desired region of the l-space. In 
most of the cases it was found practical to target subspaces of the l-space for a 
calculation, necessitating the “matching” of the obtained probability distributions, 
since results from the calculations in different l-subspaces are undetermined up to a 
normalization factor. This matching is usually done by examining the calculated 
probability distributions P(L) for the different regions and determining the nor- 
malization factor in such a way to obtain the best “match” in the overlapping 
regions (P(h) L& is the Boltzmann probability of occurrence of configurations with 
parameter h E [L, h + (A] ). 

The optimal choice of E,(1) is clearly 

E,(1) = kTln P(L) (= - W(1)). (3) 

Equation (3) also defines the potential of mean force W(k) along the coordinate 1. 
Unfortunately, P(L) is obtained only as a result of the calculation with the proper 
E,(I), thereby creating a vicious cycle. 

We propose to break this cycle by an iterative approach where P(h) is first 
estimated on the small set of I that would be sampled using E and this estimate is 
used in the next step to enlarge the set of 1 sampled. This refinement is performed 
until the adequate E,(A) is found. There are several problems to be solved before 
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such an algorithm would work successfully on complex systems such as molecular 
liquids: 

a. The algorithm has to provide an automatic matching procedure that works 
even when the individual estimates of P(i) are not too precise (otherwise the 
iterations would have to be too long for the method to be practical). 

b. The algorithm has to able to recognize iterations that should be dropped 
as equilibration (otherwise too many iterations would be “wasted” in correcting the 
error). 

c. The algorithm should monitor the degree of the coverage of the k-space 
required and be able to “steer” the sampling towards the undersampled or unsam- 
pled region. This is particularly important since the estimates of P(k) are likely to 
be the most imprecise near the boundary of the l-region sampled and easily can 
have the effect of preventing the extension of the region sampled. 

d. Provisions should be made to recognize likely errors in the calculated P(h) 
and the temporary replacement of these parts. 

While the present work was in progress, Paine and Scheraga published a 
calculation determining the probability distribution of the dihedral angles in a free 
dipeptide molecule [ 111 that was based on the iterative use of Eq. (3), as proposed 
here. Due to the small dimensionality of the problem, none of the difficulties 
described above have been encountered and the straight application of the iterative 
scheme worked successfully. 

3. THEORY 

We describe here an algorithm for the self-consistent determination of E,(1) 
over a domain D. The description will be in terms of a multidimensional 1. 
However, the numerical example given is for the case of a l-dimensional 
parameter 1 and some steps in the algorithm will contain specific references to the 
1 -dimensional case. 

3.1. Definitions 

Assume that P(k) is computed on a finite grid { 1,). Let S, denote the set of 1, 
that was already sampled after iteration n and Pf: the estimate of P(&), based on 
the first n iterations, undetermined up to a normalization factor. For iteration n, let 
s, be the set of 3Lk sampled during the iteration, f: be the number of configurations 
on which the probability estimate pt, obtained from this iteration only (again, 
undetermined up to a normalization factor), is based. Furthermore, for any 
iteration n, let 

(4) 
j= I 

ri =f,YF: (5) 
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YS; gives the relative contribution of iteration n to the estimate Pf, and wf: gives the 
relative contribution of the gridpoint I, to pi in iteration n. An indicator to the 
degree of sampling of the kth gridpoint in n iteration S1f: can be defined as 

Finally, the function A”@., S) is defined as 

k”( h, S) E s, jh-i’(i, S)l =min II-k’1 
A’E s (8) 

that is, h’(l, S) is the point in the set S closest to h. 

3.2. The Outline of the Algorithm 

The algorithm consists of the following steps: 

1. Set the iteration counter n to 0, set S, = {O}, P&) = 1, and E,(h) = 0.0. 
2. Increment the iteration counter n. 
3. Run the simulation with the latest E, for a “reasonable” length. 
4. Compute p: for each grid (using Eq. (2)). 
5. Decide, if the iteration is to be considered an equilibration step. If so, 

repeat from step 3. 
6. For n > 1, match p, and {p, 1 i = l,..., n - I} to obtain the best estimate P,,. 

The problem is to find the appropriate normalization factors N, for each p, so that 
they can be correctly combined to form P,,. The matched probability distribution 
Pf, is obtained as 

,I 

P;= c r;N,p;. (9) 
i= I 

The rf[ factor in Eq. (9) gives higher weight to better sampled gridpoints. 
7. If the sampling of the parameter set D appears to be adequate, stop. 
8. For each grid h, E S,, set 

EW(LL) = kTln P:. (10) 

9. Assign values for a 4 S,. This step involves: (a) extrapolation of E&1,); 
(b) possible temporary modification of EW(Lk) to promote the sampling of under- 
sampled regions; and (c) modification of EW(kP) to contain the sampling within 
the set D. 
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10. Modify temporarily E,@,) to rectify suspected errors in PE. 

11. Repeat from step 2. 

3.3. Detailed Description of the Individual Steps 

Step 5. Equilibration check. In order to recognize iterations that are to be con- 
sidered equilibration and discarded as such, one has to compare the set s, with the 
previously sampled regions. In the present version we discarded an iteration n if the 
set s, contained grids that were “significantly outside” the overall region sampled 
before, (including the discarded iterations) and continue from step 3. The reason for 
this is that if the simulation reached a new region then the iteration should be 
definitely considered an equilibration period. By “significantly outside” we meant 
that the set si contained points that differ from any previously sampled points by 
more than 0.06. 

As an enhancement, depending on the length of an iteration, or on the distance 
of the newly sampled ponts from Sip,, it might be useful to eliminate the sub- 
sequent N, iterations. It is also likely, that if the set s,, differs too much from s,,+ , 
(even though points in si were already sampled at an earlier phase of the 
calculation) then the calculation was in an unequilibrated phase and should be 
similarly discarded. 

Step 6. Matching. The first question here is the establishment of a matching 
criterion that can be applied without the need of human intervention. There are two 
obvious choices: 

(1) minimize the appropriately weighted sum of deviation squares 

ri c wk( Nip; - Py (11) 
i=l {klLkGs.) 

or 
(2) minimize the analogous relative deviation square sum 

DS= i 1 w;[(N,p;- P;)/Pf:12. 
j= I [kli.~ES,) 

(12) 

The wf weighting in Eqs. (1 1 ), (12) is introduced to reflect the accuracy of the 
estimate pf . This choice gives equal weight to each iteration and is thus meaningful 
only if the iteration length is kept constant. A more general choice, allowing for 
variable iteration length is wf(Li/L), where Li and L are the number of con- 
figurations in iteration i and the whole run, respectively. 

The minimization of the deviation square leads to a system of linear equations 
(given in the Appendix), whose solution is rather straightforward while the 
minimization of the relative deviation squares results in a system of nonlinear 
equations. The solution of the latter can be done by a numerical minimizer and 
requires also a reasonable initial estimate as described below. Unfortunately, the 
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probabilities can vary over several orders of magnitude, thus it is necessary to use 
the relative deviation square to ensure that the quality of the tit will not depend on 
magnitude of the fitted function. 

A common feature of both expressions that Ni= 0 is a solution to it, although 
clearly not the one we are looking for. This reflects the fact that the whole system 
still will contain an undetermined overall normalization factor. To avoid obtaining 
this trivial solution, we always fix one of the Nj-s (the first one) to one. Also, if the 
si’s form pairwise disjoint classes the minimization is only necessary for the class 
which contains iteration ~1. 

A tempting proposal here is to retain Nj once it is computed and for each 
iteration n determine only N,. Such procedure could be called l-step optimized 
matching as opposed to the n-step optimized matching where all N;s are (re)deter- 
mined at each iteration. 

The procedure used in the present work used the nonlinear n-step optimizing 
matching, that is, all N;s were determined in each step by minimizing the DS of 
Eq. (12). The initial estimate of the N;s were obtained by using the N,‘s of the 
previous iteration and determining the initial estimate of N,, from a linear one step- 
optimized matching by minimizing 

{k,z,, p ,/(,,,ETn) F: 4)] (f% 1 -p:)‘+m.pl:-W’} (13) 

where Pi is given as 

Pf:=(l-r~)P~~,+rj:N,,p~, (14) 

a special case of Eq. (9). Differentiation with respect to N,, yields the equation 

where 

Use of the non-linear l-step optimized matching to minimize the corresponding 
relative deviation square sum should be even better but the simplicity of Eqs. (15) 
(16) would be lost. 

The derivatives of DS, required for the numerical minimizers, are given as 

&D,=,i c ~:{~;P;@‘,P; - Pf:HP:)2 
, ,= 1 tklhthj 

- rfpfC(N,pf’- Pk3’l(P~)’ + (Nip; - PiMf?‘l> 

where 8: is the Kroenecker delta. 

(17) 
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For calculations requiring a large number of iterations, it might be necessary to 
group the iterations into smaller sets and use fully optimized matching first within 
the sets and then optimize the matching of the grouped iteration estimates. 

Step 9. Assignment of E&h,) outside S,. The simplest assignment for & $ S,, is 

E,(b) =-e- E&“(L S,)) (18) 

that is outside S, set E&h,) to the value that it has at the point in S,, nearest to h,. 
Use of Eq. (18) will lead to possibly large discontinuities in E&h,) whenever the 

sI(s can be partitioned into pairwise disjoint classes. This can be avoided if one 
applies a “group normalization factor” to each disjoint class that brings P, to the 
(nearly) same scale for all classes. For the l-dimensional 2, used in the com- 
putational example given in this paper, this can be simply achieved. Assume that 
the parameter il has been sampled in the intervals [A:, A:], [ii, A:],..., such that 
1,; < q+ ] . Starting with i= 1, for each “gap” i, do the following: (a) set 
E,(&) = E&i,‘) for A,! < 2, < $‘+ ,; (b) set E&l,,) = EW(Ak) + E,(Lf ) - E,(%j’+ ,) 
for L&1&p+,. For multidimensional 1, however, this task leads to another 
minimization problem since, in general, there is no unequivocal way of defining the 
analog of the endpoints of the classes. 

To encourage the extension of the sampling one should again compare the region 
sampled in iteration n with the previous history of the calculation. If the sets,, 
shrunk from s, ~, , that is, s, ~, 4 s, and the abandoned region was “undersampled,” 
then set 

(19) 

By an “undersampled” gridpoint we mean that the sampling indicator S1f: is less 
than 0.5. Use of Eq. (19) will encourage sampling of the region suddenly abandoned 
in iteration n. It is also possible to use a set s:,~, > s,,+ , in the test to decide if 
Eq. (19) is needed. 

Finally, for 1,$ D, set 

E,(L) * EdL, D) + KIL - k”(L, D)l (20) 

to discourage sampling outside the targeted domain D. 

Step 10. Temporary modification of EW(&). If there is some information about 
the range of W(S) then one can set a limit DW,,,,, to the difference between the 
values of the weighting function at neighbouring gridpoints. For the l-dimensional 
case this translates into replacing E,(lk) with E&,4,) + d for k >j whenever 

DW=IEw(~~,)-E,(~~-,)I>DW,,, (21) 

where d is given as 

d=sign(DW) * (DW,,,-DW). (22) 
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It is reasonable to restrict this replacement to gridpoints that were not sampled too 
well, that is, where the sampling indicator &‘I; is smaller than a threshold value, 
chosen to be 0.2 in the present work. 

4. CALCULATIONS 

The algorithms described in Section 3 was tested on the calculation of the solvent 
contribution to the free energy difference between two conformations of the Alanine 
dipeptide in aqueous solution at 25°C. This system has been studied recently by the 
original umbrella sampling method and the free energy difference was determined 
by computing the potential of mean force along a straight line connecting the two 
conformations in the torsion angle space [S]. The solution was modeled by one 
dipeptide molecule with flexible torsion angles and 201 rigid water molecules under 
face-centered cubic periodic boundary conditions. The water-water interactions 
were modeled by the MCY-CI potential [12] and the dipeptide-water interactions 
were described by the potential library of Clementi and coworkers [13]. The com- 
bination of force bias [ 141 and preferential sampling [ 151 techniques has been 
employed on the molecular displacement whose joint application was shown to 
enhance significantly the convergence of solute-solvent properties [ 161. 

The conformation of the dipeptide is traditionally described by the torsion angles 
$ and 4, defined by the backbone atoms NCCN and CNCC, respectively. An 
unsuccessful attempt has been made earlier to generate an E(h) = E($, 4) that sam- 
ples the entire torsion angle space using E(L) in different functional forms [ 171. 
However, since several conformations have been identified as possible minima of 
the potential of mean force surface, calculations described in [S] sampled confor- 
mations connecting two pairs of these possible minima. One calculation sampled 
the line connecting C,(90”, -90’) and zR( -5O”, -70”) and another sampled the 
line connecting C, and P,,( 150”, -8OO). These calculations gave the solvent con- 
tribution to the free energy difference between the two conformations, d A y, as 

dAyd = kTln(P,/P,) (23) 

where Pi and P, are the Boltzmann probabilities of occurrence of conformations i 
and j, respectively. 

In these calculations EW was the function of a single parameter 2 that detines the 
conformation along the line connecting i and ,j, 

($3 4) = (I - A)($~2 4,) + A($j2 4,) (24) 

and E, was used in an analytical form 

E,(i) = c(i - I.($. (25) 

The calculation of dA:.yd required the sampling of a total of - 3000 K and 
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-2000 K configurations for the two lines studied, respectively. This includes 5 and 
3 separate runs of 500-700 K length in addition to several shorter ( - 50 K) trials to 
determine the appropriate c and I,, values for each run. 

The algorithm was tested on the sampling of the parameter 1 of Eq. (24) in the 
domain D = [0, 1 ] for the C, -+ CI~ transition. This appears to be a good test case 
since P(L) has a minimum at A g 0.25. The calculation was started from a con- 
figuration with 2 = 0.18. One iteration consisted of 20K configurations. The C and 
K parameters in Eqs. (19) and (20) were both chosen to be 0.5 kT. The [0, 1 ] inter- 
val has been divided into a uniform grid of 50 intervals and E, has been computed 
by linear interpolation between the grid centers. 

5. RESULTS 

At the outset of the study, both the linear l-step optimized matching and the 
linear n-step optimized matchings were tried. The l-step optimized matching, after 
having crossed the barrier remained near the i = 1.0 range, which corresponds to 
the minimum of W(L). The linear fully optimized matching provided reasonable 
coverage for the [0,0.8] range but was unable to reach i = 1.0. Furthermore, the 
matched curves varied qualitatively even after 30 iterations (of 10 K length). This 
demonstrates the effect of the large variations in the order of magnitude of P(L) 
over the [0, 1 ] interval. 

The calculation using the non-linear n-step optimized matching crossed the 
barrier in 6 iterations and reached il = 1.0 in 12 iterations. However, the estimate 
near 2 = 0.45 and 2 = 1.0 was very bad at first: The W(i) values showed a sudden 
increase as 3, was approaching 1.0 and a sudden drop as L was approaching 0.45 
from larger 2 values. It took 25 iterations to correct the first error. Since the error 
was in the direction of overestimating W(A), it had the effect of “trapping” the 
system until the W(1) estimate was corrected. The subsequent 25 iterations were 
spent in the range [0.5, 1.01. The correction of the second error turned out to be 
more difficult since it had the effect of “repelling” the system from the problematic 
region. However, use of Eq. (19) in step 9 finally forced the system to sample 
smaller I values and the second error was also corrected. This allowed the system 
to recross the barrier and sample again the region around ,?. = 0.0. The calculation 
was stopped after 118 iterations, requiring 2480 K Monte Carlo steps. 

The resulting W’(A) is shown in Fig. 1 together with the W(A) estimates from the 
previous work using the harmonic umbrella sampling. The original work performed 
the matching by using points that lie in an interval where the two curves are the 
“most parallel” and no quantitative account of the precision of P(A) at the matched 
point was used. The W’(L) curve obtained in the present work parallels the matched 
harmonic umbrella sampling result rather well, with the exception of run 2. This 
run was around the maximum of W(n), and was experiencing some ergodic dif- 
ficulties, as remarked in [S]: The first part of the calculation was spent mainly on 
the C, side of the W(L) curve and the second part around the a, side. In view of 
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FIG. 1. Potential of mean force along the correlated conformational coordinate A. Full lines: results 
of the harmonic umbrella sampling of [S]. Filled circles show point used for matching; open circles, the 
results of the adaptive procedure using the non-linear n-step optimized matching; ----, the result of 
the new harmonic umbrella sampling calculation replacing run 2; ~.~. -, the result of run 1 shifted to 
match the new run 2. 

the present, rather large discrepancy, we performed a new harmonic umbrella 
sampling calculation. After several unsuccessful tries we found that E,(L) = 
150*(1, - 0.25)2 sampled consistently both sides of the peak of IV(J). We performed 
a 700 K long run. The result of this run is also shown on Fig. 1. 

The free-energy difference was obtained in the present work using the adaptive 
algorithm as 1.4 Kcal/mole. The previous work gave 3.6 Kcal/mole. After replacing 
the second run with the one calculated here, we obtain 1.8 Kcal/mole. The error of 
dAy was estimated previously to be 0.3-0.6 Kcal/mole, based on the stability of 
the P(I)/P(R’) ratios examined in the longest individual run. 

The fully optimized matching procedures require computer time that is roughly 
proportional to the third power of the number of iterations. Optimizing 50 
iterations added about 15% to the Monte Carlo computation effort. 

6. DISCUSSION 

In comparison to the standard umbrella sampling procedure the algorithm 
presented here has the following advantages: 
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1. The sampling region can be set a priori and the possibility of having to do 
“one more run” to fill a gap is absent. The need for human intervention is reduced. 

2. There is a built-in self check on the matched probability distribution: If the 
sampling stays too close to a region or avoids sampling a region, then the P(E,) is 
incorrect there (and vice versa). This is a particularly important point as it was 
demonstrated that the harmonic umbrella sampling result may be seriously in error 
on runs of medium length without giving any obvious sign of lack of convergence. 

3. The matching of the individual runs are mostly done based on the middle 
of the sampled interval. The standard procedure has to use the most unreliable 
regions for matching, thereby reducing its precision. 

4. The current work required about the same computational effort as the con- 
ventional procedure. However, it appears that with relatively simple modification 
significant computational gains can be obtained as discussed below. 

In summary, the present work demonstrated the feasibility and the improved 
reliability of the adaptive procedure and pinpointed the issues critical to its success: 
(1) Use of a matching criterion that gives uniform a priori weight to all 1 values 
(that is, use of the non-linear matching instead of the linear); (2) flexibility in 
assigning the normalization constants N, (that is, use n-step optimized matching 
instead of the computationally more appealing l-step optimized matching); and 
(3) provide filters to eliminate iterations that constitute an equilibration phase. 
Future work, however, should reline and improve it on several points: (1) Step 5 
should be enhanced to allow for better recognition of iterations that are to discar- 
ded as equilibration. In particular, additional filters in step 10 could recognize some 
of the obviously wrong estimates in a later stage of the calculation and remove 
them from the averaging. (2) The algorithm is likely to be sensitive to the choice of 
C value in Eq. (19). Too small a value will not have the desired effect and too large 
a value will result in incorrect estimates since the weighting function was changed 
so drastically that an equilibration step would be needed first. (It appears that our 
choice was a little on the high side for this system.) (3) More work is needed to 
determine the optimal choice of iteration length, the best way to group iterations 
into “super iterations” (as suggested at the end of step 6), and the optimal size of 
the interval D to be sampled in a single calculation. 

APPENDIX: DETERMINATION OF THE NORMALIZATION CONSTANTS WITH 
THE LINEAR H-STEP OPTIMIZED MATCHING 

Differentiation with respect to each Nj yields a system of linear equations with 
coefficients 

A,= C (Gkr,krj‘ - w,“rF - wrrf) p:pf + #w,k(pk)’ J (Al) 

{WJ.kES, A s,) 
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where 

MIHALY MEZEI 

(42) 
,=I 

The system is homogeneous, reflecting the fact that there is an arbitrary nor- 
malization factor for the composite probability distribution. Fixing one of the N,‘s 
to 1.0 yields an inhomogeneous system that will provide definitive values for the 
N;‘s. Notice, however, that the solution will depend on the i chosen since fixing one 
of the Ni’s slightly alters the minimization problem. (It would be independent of the 
choice of i only if the determinant of A were zero.) 
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